If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-10n-5=0
a = 7; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·7·(-5)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{15}}{2*7}=\frac{10-4\sqrt{15}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{15}}{2*7}=\frac{10+4\sqrt{15}}{14} $
| -40x2+-13x+1=0 | | 5x−3x+4=16 | | 43x+10=360 | | 3×c+8=45 | | 4.8x=13.8 | | 4.8x=13.8x | | X+2y=166 | | 4a-1=5a-7 | | 7y+34=11y=6 | | 60+40x=16+48x | | Q2x-14=4x+10 | | 9m=81m= | | 1x-8=16 | | 3-3k=-2k-2 | | 1/4x+4=x-14 | | -40-7a=-7-25-15a | | 36+5x=6-2x-3x | | 6x–1=0 | | X³+50x+7=0 | | 10c/3=17 | | 2(25-y)=50 | | 4p+1+3p=–9+6p | | 10^(6x)-10^(3x)=2 | | {10}^{6x}-{10}^{3x}=2 | | 5(x-6)+8=7x-10 | | 6+(2x)+4=14 | | 27=n/5 | | 4x-1=8x16 | | 14d=896 | | 154=22p | | 960=30p | | p/20=19 |